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Abstract: Scientists are faced with a dilemma: Either they can write abstract programs that
express their understanding of a problem, but which do not execute efficiently; or they can write
programs that computers can execute efficiently, but which are difficult to write and difficult to
understand. We have developed a compiler that uses partial evaluation and scheduling techniques
to provide a solution to this dilemma.

Where conventional compilers compile a program without any knowledge of the data the pro-
gram will be run on, our system uses information about the data when transforming the program.
This technique, by eliminating nearly all the user's control and data abstractions, produces high
performance code. For an important class of numerical programs, partial evaluation dramatically
improves performance: we have achieved speedups over conventionally compiled code that range
from seven times faster to ninety one times faster.

We also show how partial evaluation can be applied to the programming of parallel computers.
By eliminating inherently sequential data structure references and their associated conditional
branches, partial evaluation exposes the low-level parallelism inherent in a computation. We present
the results of applying a parallel scheduler to a partially evaluated program that simulates the
motions of nine bodies under mutual gravitational attraction.
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Introduction

This research aims to remove the problem that while the mathematical description of physical
phenomena is abstract, concise, and elegant, the code that simulates physical phenomena,
and supposedly implements the mathematics, is opaque, verbose, and unwieldy. Code has
been this way because programming systems - the language and compiler together - have not
collaborated to produce efficient code for abstractly specified computations. We have created
a system that allows scientific computations to be expressed using a high-level description
analogous to the notation that describes the problem being solved. Our contribution is not in
the language, which is Scheme [2], but in the compiler, which consists of a partial evaluator
and a scheduler.

Where conventional compilers compile a program without any knowledge of the data the
program will be run on, our system uses information about the data when transforming the
program (Figure 1). The partial evaluator executes the user's code, removing data structure
manipulations and performing optimizations, to create a program specialized for the data.
This specialized program is very low level: in the place of data abstractions and control
abstractions are explicit scalar data values and primitive numerical operations.

The scheduler uses resource planning and scheduling techniques to map the specialized
program onto a particular architecture. The specialized program, internally represented as
a dataflow graph, makes explicit the creation and use of each numerical value, allowing the
scheduler to decide when and where each value is crcated and used. This power allows our
system to make very efficient use of heavily pipelined and parallel machines, and reduces the
need for runtime hardware support such as scoreboards or automatic caches. Our compiler
produces high-performance code for serial, parallel, and special purpose architectures.

Programs have been written before to create routines specialized for given inputs. One
of the earliest was [12] which would create Fortran code for performing FFT's of given sizes.
Barzilai [4] created a program that created specialized digital simulators for circuits, Bryant
[7] did the same for switch-level simulators. Early versions of Spice [13] could specialize
the code for solving a matrix. Our work differs in that we provide a general mechanism for
performing partial evaluation, thereby allowing specialization to occur over a larger portion
of the overall problem than would otherwise be practical.

This paper has four sections. The first discusses abstraction and its costs. The partial
evaluator, and how it removes abstractions to produce efficient code and expose parallelism,
is discussed in the second section. Section 3 presents the results of applying our methods in
many different domains. Using partial evaluation to program parallel computers is disrussed
in Section 4. We conclude with a summary and directions for future research.
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Figure 1: Our compiler consists of a partial evaluator and a scheduler. The partial evaluator
accepts a description of the Input data set and the program to be c vdluted, producing a
numerical dataflow graph. This graph is composed entirely of numerical operations. The
scheduler maps the graph onto the target architecture.

1 Programming Abstractions

The purpose of abstraction in programming is to express complex ideas in simple ways.
Doing so takes several guises: employing first class aggregate data values, using stateless
expressions, creating objects, and inventing idioms wherever possible. Each of these abstrac-
tion mechanisms exacts a cost. In this section we elaborate on some of these abstraction
mechanisms and discuss their costs.

Capturing computational idioms is very important. Wherever two pieces of code only
vary a little, a new idiom should be created to subsume the two special cases. The more
general the idiom, the more powerful it is, but the more overhead in getting actual "work"
done. For example, consider a fully general routine for summing the results of applying an
arbitrary function to a sequence of integers:

(define sum
(lambda (lower upper function)

(if (- lover upper)
(function lower)
(add (function lower)

(sum (+ lower 1) upper function)))))

In this routine add is an overloaded function that dispatches on the types of its arguments.

2



This allows function to return any type of object that add knows how to add. The cost for
such a routine in a conventially compiled language is high: runtime tags must be maintained
for add to dispatch on, and the dispatch must be done each time through the loop.

Stateless routines reduce the conceptual overhead on the programmer. For example,
consider computing a sequence of matrices which are added together. The simplest method
might be to use the sum procedure defined above where the function passed in delivers
each matrix in turn. This incurs a large overhead. Storage for the intermediate matrices
must be allocated and reclaimed, and code for adding matrices must be run each time
through the loop. To avoid paying the cost of intermediate matrices and matrix operations,
a programmer must use a different, and less modular, method that uses a single global matrix
that is incrementally added to.

Further examples would show the same symptoms: the program taking on more of the
burdens of the programmer, and costing more for it. The costs we just saw included ex-
tra tag bits, runtime dispatching, and intermediate structures that must be allocated and
deallocated. A system that supports abstraction cannot avoid these costs. We show in
the next section how partial evaluation pays these costs exactly once, at partial evaluation
time, so that using abstractions bears no runtime cost. Simultaneous with the eviction of
the cost of abstraction is the manifestation of all quantities as explicit scalars, exposing all
instruction-level parallelism (as we show in the Section 4).

2 Partial Evaluation

Partial evaluation [6] is a technique for compiling and specializing programs. Our partial
evaluator converts a program and a symbolic description of the program's eventual inputs
into a dataflow graph. The description specifies values that are known at compile time, and
uses symbolic values to represent those values that are not known. A symbolic value is a data
structure, much like a symbol table entry in a standard compiler, that represents a specific
piece of missing data. Each symbolic value contains whatever information is available about
the piece of data that it represents, including its type.

We have developed a particularly simple technique for performing partial evaluation by
executing a program at compile time on the symbolic inputs. A dataflow graph, representing
the compiled program, is built up incrementally as symbolic execution proceeds. Whenever
all the operands to an operation are known, the operation is simply executed. When one
or more inputs are symbolic, a new symbolic value is returned, and a node is added to the
dataflow graph. Adding a node to the graph effectively delays the operation until runtime
when its operands will be known.

We show examples of the output of partial evaluation, then describe the limitations of
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partial evaluation.

2.1 Examples of Partial Evaluation

We now show how optimizations such as loop unrolling, type dispatch, intermediate data
structure elimination, and constant folding are automatically achieved. The reader should
always be aware that none of these optimizations are explicitly coded: they fall out auto-
matically as a result of partial evaluation. These examples are not exhaustive: wherever the
partial evaluator can do work, it will.

Our first example exhibits loop unrolling. Consider a program for summing the elements
of a vector together:

(define vector-sum
(lambda (v)

(sum 1 (vector-length v) (lambda (n) v[n]))))

The expression

(partially-evaluate vector-sum (make-symbolic-vector 4))

creates the specialized version of vector-sum for vectors four elements long:

(lambda (v)
(add v[il] (add v[21 (add v[3] v[4J)))).

The function make-symbolic-vector produces a symbolic vector of the specified length.
This vector is traversed at compile time. We can successfully apply the produced program
to any vector of length four.

One of the most important optimizations is the elimination of short-lived intermediate
structures. For example, consider adding complex numbers together, the code for which
might be

(define complex+
(lambda (a b)
(make-complex (+ (complex-real a) (complex-real b))

(+ (complex-imag a) (complex-imag b))))).

Adding several complex numbers together one at a time will produce several intermediate
complex numbers, all of which are represented by vectors. The expression
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(partially-evaluate vector-sum (make-symbolic-vector 4 'complex))

creates (the flowgraph for) the following program

(lambda (v)
(let ((vI v[I]) (v2 v[2]) (v3 v[3]) (v4 v[41))
(make-complex (+ (complex-real vI)

(+ (complex-real v2)

(+ (complex-real v3)
(complex-real v4))))

(+ (complex-imag v1)
(+ (complex-imag v2)

(+ (complex-imag v3)
(complex-imag v4) ))))))

Had this code been compiled using standard techniques, then, at run time, several inter-

mediate structures for complex numbers would be generated and then thrown away. Those

structures were only used to route information from one function to the next. Because the

routing is done at partial evaluation time, the structures doing the routing do not need to ex-

ist at run time. Eliminating intermediate structures this way is a generalization of Wadler's
"listless programming" [16].

We now consider constant folding. Consider the inner product function, defined as

(lambda Cx y)
(sum 1 (vector-length x) (lambda (k) (times x[k] y[k]))))

where times does data dependent dispatching, just as add did. To create a specialized

version of inner product for two vectors of length three where the first element of the first

vector is always 1 and the second element of the second vector is always 0, we create the

specialized function as follows:

(partially-evaluate
inner-product

(vector 1.0 (make-symbolic-float) (make-symbolic-float))
(vector (make-symbolic-float) 0.0 (make-symbolic-float)))

which creates

(lambda (x y) (float+ y[l] (float* x[3) y[3])))

-- • • .II I I I II II5



(LAMBDA (STATE)
(LET*

((TEMPI (VIEF STATE )) (TENP2 (VPEF STATE 0))

(TEMP3 (VEF TEMPI )) (TEMP4 (VREF TEKP2 0))
(TEMPS (* TEMP4 .00005)) (TEMP6 (+ TEMPS TEMP3))

(TEMPS (VREF TEMPI 2)) (TEKP9 (* TEMP4 .02))

(TEMPIO (+ TEMP9 TEMP8)) (TEMPI2 (- TEMPIO TEMP6))
(TEMP13 VREF STATE 2)) (TEMPI14 (* TEMP12 49.6277915633))

(TEMPIS C- TEMP14 TEMP4)) (TENPI7 (* TEMPIS .02))

(TEMP18 C- TEMP17 TEMPS)) (TEMP19 (+ TEMP14 TEKP4))

(TEMP21 C* TEMP19 .00005)) (TEMP22 (+ TENP21 TEMP3))
(TEMP23 (* TEMP12 4.96277915633e-3)) (TEMP24 (+ .1 TEP13)))

(VECTOR (VECTOR TENP14) (VECTOR TENP23 TEJ22 TEMP18) TEMP24)))

Figure 2: Compiled code for the transient analysis of a simple RLC circuit.

where float+ and float* perform floating point addition and multiplication, respectively.
Note that the multiplications of y[1] by 1.0 and x[2] by 0.0 were performed by the partial
evaluator. This example is not as contrived as it seems. One could easily imagine a graphics
system that would benefit from specializing afflne transformations.

We close this subsection with an example of the program (Figure 2) produced when a
circuit simulator that uses nodal analysis and trapezoidal integration is partially evaluated
on the simple RLC circuit shown below. The stepsize was chosen at compile time to be 0.1
seconds.

10K L 1000H

The simulator generates the voltages at time t + h from the state at time t by creating
and solving a sparse linear system. From the node voltages at time t + h and the state at
time t, it computes the branch currents at time t + h. The simulator generates the linear
system by summing together the current and conductance contributions of each component.
The simulator is object oriented: each time-varying and reactive component carries its own
function for computing its contribution to the system M. These functions must be retrieved
and invoked at each time step.

The "straight-lineness", compactness, and lack of structured values are the striking at-

6



tributes of the compiled code. No vestiges of the matrices produced and consumed during
compilation, or of the control structures for doing so, or of the gaussian solution, or of the
function retrievals and applications, appear in the final code. All address calculations vanish.

2.2 Benefits of Partial Evaluation

There are many algorithms that are specializations of general algorithms. Many of these
algorithms are automatically recreated by partial evaluation. For example, consider a system
of simultaneous linear equations. The algorithm employed for solution depends upon the
shape of the system. If the system is known to be tridiagonal then an algorithm for solving
tri-diagonal systems is used. A system with very few non-zero entries is solved using Gaussian
elimination. The algorithm for solving tridiagonal systems is a specialization of the general
Gaussian elimination algorithm. Partial evaluation produces the same program for a solving
a tridiagonal matrix regardless of whether the general or specialized algorithm is partially
evaluated. This is an important result: much programmer time can be saved by letting the
partial evaluator do the specializations the programmer used to do.

We have found it simpler to write general programs and let the partial evaluator specialize
them. This is an example of an important capability provided by partial evaluation: the
ability to employ generalized libraries. This capability is particularly powerful in the context
of a language such as Scheme that supports first-class procedures. Rather than requiring
the programmer to code particular computations, partial evaluation makes it practical to
code abstract numerical methods. For example, the Runge-Kutta integration method can be
defined independently of the particular function being integrated. A more complex integrator
can be created by combining the Runge-Kutta integrator with a quality-control strategy that
examines the results produced by runge-kutta. This combination can then be specialized for
the particular function being integrated:

(define fancy-integrator
(quality- c~trol-strat'3gy

(make-runge-kutta-integrator
(particle-force gravitation))))

Halfant [10] shows that by using abstraction and higher order procedures, it is possible
to create more powerful problem solving strategies than it is feasible to produce by hand.
Partial evaluation makes this approach practical by specializing the particular combination
of routines used to express a computation.

0 
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2.3 Limitations of Partial Evaluation

Partial evaluation works best for situations where the structure of the system stays constant
and only the state changes. Simulations of circuits, dams, and solar systems fall into this
class. It does not work well where the structure changes or the computations are extremely
data dependent. For example, partial evaluation does not work as well for sorting arrays,
or inserting elements into balanced trees. Similarly, it is difficult to use these techniques for
linear programming, because the choice of pivot is data dependent.

One drawback of our approach is that a program must be recompiled when the structure
of the problem changes. Recompilation is only a minor inconvenience, as simulations run for
a very long time. As long as the recompilation cost is a small fraction of the overall time,
partial evaluation is worthwhile. More importantly, initial conditions can be changed and
new experiments performed without recompiling.

Because loops are unrolled at partial evaluation time, code blowup can be a problem. In
particular, for algorithms that are linear in the size of the data, the code space will also be
a linear function of the data. This is not a problem for a simulation of a ten, hundred, or
possibly even thousand particle systems, but will cause problems for larger systems. When
the algorithm is polynomial, as it is for solving linear systems, the code size can be quadratic
or cubic in the data size. When this becomes a problem, we manually choose the parts of
the computation to fully unroll and the parts not to unroll.

3 Applications and Results

We have applied these techniques to several numerically oriented scientific problems. These
problems were chosen from active research at MIT and Stanford, providing a "real-world"
demonstration of the applicability of partial evaluation to scientific computation. Scheme
programs implementing the N-body algorithm [15], the solution to Duffing's equation [1,
the translation operator for the Multipole Method [17], and electrical circuit simulation were
taken directly from code in use by researchers. We first discuss the experiments, then present
performance measurements.

The experimental method followed was:

1. Obtain working code from researchers.

2. Select the parts of code to be partially evaluated.

3. Compile the code, and produce a C program as output.

8



4. Compile the C program and link it into the Scheme system1 as a high-performance
subroutine.

3.1 Experiments

The N-body Problem

The N-body problem involves computing the trajectories of a collection of N particles which
exert forces on each other. This very important problem arises in particle physics, astronomy,
and space travel. For example, our solar system can be modeled as a 10 particle system in
which the forces are due to gravitational attraction. An N-body program written in Scheme
by Gerry Sussman was used as a starting point for the compilation process. This program
makes liberal use of abstraction mechanisms, including higher-order procedures, lists, vectors,
table lookups, and set operations.

In order to simulate future particle motion, the program integrates the forces that the
particles exert on each other over time. The integration-step routine takes an initial state of
the planets, and produces a new state that corresponds to one time-step later. This routine
is then repeated, thereby advancing the system in time. Our compiler was used to create a
specialized version of the integration-step procedure.

The state of the system includes the planet's positions, velocities, and masses. The data
description to the compiler left the positions and velocities unknown, but specified masses,
which are virtually time-independent. Many computations involving the planets' masses
were performed at compile time. For example, since Pluto is very small relative to the other
planets, its mass was approximated as zero. The partial evaluator propagated this piece of
information throughout the program, eliminating numerous computations.

Several measurements were taken to determine the effectiveness of our techniques. Tests
were run for both the 6-body problem and the 9-body problem, 2 using the Runge-Kutta
(RK) integration method. When the masses of the planets are known at compile time, the
compiled programs run up to 11% faster.

'Specifically, MIT CScheme release 7 with Liar compiler version 4.38, running on a Hewlett-Packard 9000
Series 350 with 16 Megabytes of memory. The timings presented do not include garbage collection time.

'in astronomy, the 6-body and 9-body problems are of particular interest. The 6-body problem is inter-
esting because it includes only the outer planets and the sun, allowing questions of the long-term stability of
the solar system to be investigated. The 9-body problem describes the motion of our solar system, exclud-
ing Mercury. Mercury is excluded because its high eccentricity necessitates the use of an extremely small
integration step-size that makes long-term integrations impractical.

9



The Multipole Method Translation Operator

The multipole method approximates force interactions involving a large number of particles.
The method, as described in [17], involves dividing space up into a quadt ree-like tree of cubes.
Part of the force approximation involves propagating information up the tree from a cube
to its parent. A significant portion of the computation time is spent evaluating translation
operators.

A Scheme implementatihn of this operation was taken from a program written primarily
for people to understand. As such, the program does not take advantage of special cases in
the multipole expansions, such as terms that are known to have exponents of zero or one.
Experiments showed that roughly half the instructions were eliminated because of algebraic
simplification involving these constants. The program was compiled for two different values
of a parameter P, which denotes the number of terms in the multipole expansions. 3

Duffing's Equation

To demonstrate the compilation of programs containing simple loops, an adaptive Runge-
Kutta integrator was used to integrate a one period evolution of the variations and derivatives
of Duffing's equation. This program was taken from Hal Abelson's work on automatic
characterization of the state space of Duffing's equation. It uses an adaptive integration
strategy coupled with a control loop that iterates for one period.

Electrical Circuit Simulation

In Section 2 we presented the result of partially evaluating an electrical circuit simulator
on a simple RLC circuit. The simulator performs transient analysis of circuits using nodal
analysis and trapezoidal integration. The simulator was written abstractly to reflect as much
of the underlying mathematics of simulation as possible. The simulator's simple structure
allows experimentation with different simulation algorithms and strategies. The experiment
we performed simulated a 120 component linear circuit where the time step was not specified
at compile time.

'P = 3 is commonly used for benchmark purposes. For large P (above 10), the growth in code size makes
compilation of the entire translation operator impractical. For large P, either a smaller segment could be
compiled, or else some loops could be left intact.

10



Performance Measurements

Problem Interpreted Compiled Specialized Speed-Up over Speed-up
Desc. CScheme CScheme Program Interpreted over Compiled
6-Body RK 1.7 0.76 0.020 35 38
9-Body RK 3.4 1.50 0.038 99 39
Mate P=3 0.26 0.022 0.002 130 11
Mate P=6 2.76 0.28 0.011 250 25
Duffing 26.1 4.04 0.53 49 7.6
Circ Sim 20.59 2.37 0.026 791 91

Figure 3: Timings of the sample applications. It is clear that tht specialized primitives are
significantly faster than the Scheme programs they were generated from. For the N-body
problem, both the time-step and the masses of the planets were chosen at compile time.

3.2 Performance Measurements

The compiler generates high-performance C programs that are called directly from Scheme
programs. The table in Figure 3 presents performance measurements for the applications
described above. It presents timings and speedups for each application running interpreted,
compiled by the Liar Scheme compiler, 4 and compiled by our compiler. The table cloarly
shows that specialization provides dramatic performance improvements.

3.3 Standalone Experiment Against Tuned C Programs

As an experiment, a st, idalone C program was produced for the circuit simulation mentioned
above. We then raa Spice3 [14] on the circuit while attempting to maintain the same
experimental procedures (number of iterations, size of timestep, etc.) We found that the
program our system produced took 12 seconds to execute for 1000 timesteps, whereas Spice3
took 164 seconds. The specialized program used a time step specified at compile time.

We are apparently performing 14 times faster than Spice3. This speedup factor is mis-
leading because Spice3's method are slightly different than ours. It performs one extra
matrix solve per timestep, and continuously estimates the integration error. We estimate
that a more careful experiment would yield a speedup of around 5, which is still excellent.
We are actively working on obtaining more accurate speedup numbers.

'The version of Liar we employed close-coded floating point operations. Had it open coded them, as
C compilers do, the numerical performance would have increased by a factor of 4. However, this does not
significantly affect our measurements because the majority of instructions in standardly comipild code do
not use floating point operations.

. .... miim midHI ie n ilmnl 11
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Figure 4: Parallelism profile of the 9-body problem. This graph represents the total paral-
lelism available in the problem, accounting for the latency of numerical operations.

4 Mapping Numerical Dataflow Graphs onto Parallel
Architectures

Partial evaluation exposes tremendous amounts of instruction-level parallelism. The fi et
author implemented several analysis and scheduling programs to study and harness this par-
allelism. For a hypothetical architecture consisting of multiple ALUs and a communicati',
network, we measured the effects of pipeline and communication latencies on performanct
It was discovered that, at least for the 9-body problem, large numbers of ALUs could be kepk
continuously busy, thereby efficiently and effectively harnessing all the available parallelism.

The experiments we present were performed using the 9-body problem. 5 We first present
graphs that prove large amounts of parallelism are created by partial evaluation. Next we
describe the constraints on the target architecture, such as pipelining and communication
costs, and show how these constraints limit the amount of parallelism that can be harnessed.
We then discuss the scheduler that maps numerical dataflow graphs onto the architecture
and present parallelism results. We close with a comparison to other work. 6

5Specifically, 12th-order Stormer integration of the 9-body gravitational attraction problem, with masses
chosen at compile time, and time-step chosen at run time.

'For a more detailed discussion of this research see (5].

12



4.1 Exposed Parallelism

Figure 4 presents a parallelism profile [3] for Stormer integration of the 9-body problem. The
profile describes the maximum amount of parallel execution that would occur if a computer
had an infinite number of processors that could instantaneously communicate. The profile is
produced by performing a breadth first search of the numerical dataflow graph, scheduling
each operation as soon as it can be performed.

This profile differs from the parallelism profiles that commonly appear in the literature
in that it accounts for the different latencies of the different arithmetic operations. (The
latencies were based on the Bipolar Integrated Technologies B311OA/B3120A floating point
chips.) We discovered that for double precision computations, latency differences are large
enough to be of fundamental importance. For our realistic latency measures there is a factor
of 2 difference in the length of the critical path between accounting for latencies and not
accounting for latencies.

4.2 Architectural Constraints that Increase Latency

Pipelining and communication delays work against rapid execution of numerical dataflow
graphs. Both increase the effective time required to complete an operation. In pipelining,
the execution of several instructions occurs simultaneously within a processor. Pipeline delay
is the number of cycles required for the result of an operation to become available as the
source of another operation. Communication delay is the number of cycles spent transferring
data between processors. We consider each constraint in turn.

Pipelining

Technological considerations often lead to overlapping the execution of successive instruc-
tions within a single processor. The parallelism profile presented above was based on the
assumption that the result of an instruction that finishes executing in one cycle could be
used immediately in the following cycle. Unfortunately, this assumption is not valid in the
presence of pipelining. Figure 5 shows that for a 3-stage pipeline, the result of an instruction
which is initiated in cycle 1 will not be available to the instruction that is initiated during
cycle 2. Thus, even with an infinite number of processors and no communication delays, a
machine composed of 3-stage pipelined processors will require about twice as many cycles
to execute a computation as a non-pipelined machine would. 7

7Since some instructions have more latency than others, the processors will sometimcs be busy more than
half the time. This would make our "twice as many cycles" seem to pessimistic. On the other hand. the
estimate also does not consider that a result must first be unloaded from a processor before it. can he loaded

" I13
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Figure 5: A typical 3-stage processor pipeline. During the LOAD stage, the data is loaded
into the ALU. The result is computed during the EXECUTE stage, and unloaded from the ALU
during the UNLOAD stage. The results produced by instruction 1 are not available to be used
by instruction 2, but are available to instruction 3.

Despite this increase in the number of cycles required to execute a program, pipelining
is advantageous because it reduces the length of each cycle. In addition, it is possible
to use some of the parallelism available in the problem to hide the latency imposed by
pipelining. Rather than scheduling all available parallel operations into the same cycle on
many processors, it is possible to use a smaller number of processors, and schedule some of
the operations during the next cycle (parallelism in time) in order to keep the pipeline busy.
This utilizes the individual processors more effectively.

Communication Latency

In practice, processors can not communicate instantaneously. The time required to move a
result from one processor to another limits how soon the result can be used by a subsequent
instruction. This has an effect that is similar to increasing the length of the pipeline, as
illustrated in Figure 6. Just as parallelism can be used to hide the latency in pipelines,
parallelism can also hide the latency imposed by communication delays.

4.3 A Scheduler for Parallel Programs

The scheduler finds a schedule that keeps each processor as busy as possible. It employs
heuristics that spread the available parallelism over the processors to hide the latencies
imposed by pipeline and communication delays. These heuristics schedule the critical path
eagerly and schedule non-critical operations around the critical path. On the 9-body problem,
the system was able to utilize 40 pipelined processors with over 90% efficiency.

into another one. This creates a one cycle cost to moving data between processors, even when ther- are no
communication delays. This effectively increases the minimum number of cycles required to compi, !e the
computation. Overall, these two effects tend to cancel each other out.
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Figure 6: A 3-stage processor pipeline with a communication latency of two cycles. As
indicated by the arrows, a result produced by instruction 1 can be used within the same
processor by instruction 3, but can not be used by other processors until instruction 6.

The scheduler operates on the numerical dataflow graph. It first computes the latency
of every possible path through the graph. These paths are then sorted, allowing the critical
path of the computation to be identified. When the operations are scheduled, priority is
given to those operations that lie in the critical path of the computation. If all available
processors are not needed to work on the most critical path, computations from less critical
paths are scheduled.

The problem of scheduling every operation onto the "best processor" at the "best time" is
extremely difficult. Rather than trying to find an optimal solution to the problem, heuristics
are used to select a "pretty good" solution. To give a flavor for the algorithm, a brief overview
is presented below:

" A set of operations is chosen corresponding to the number of processors that are avail-
able. This selection is based on the latency priorities described above.

" Among the "chosen operations", those whose operands have been available long enough
to have been transmitted to other processors have lower scheduling priority than those
operations whose operands have been produced recently. This gives priority to non-
relocatable computations.

* A computation whose operands were produced by a processor will be scheduled in that
same processor wherever possible.

" The number of connections between processors is kept to a minimum. When the
operands of a computation must be transmitted from one processor to another, the
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scheduler attempts to choose a pair of processors that have communicated with each
other in the past.

* Several heuristics exist for breaking ties. These take into account such factors as the
memory usage within each processor, the number of computations that are waiting for
a particular result, and the frequency with which processors use the communication
network.

We have found these heuristics to be quite effective. On the 9-body problem, the sched-
uled code provided speed-ups near the theoretical limit.

4.4 Performance Measurements

Figure 7 shows the results of applying the scheduler to the 9-body problem, for a 40 processor
system with a 3-stage processor pipeline and a communication latency of one cycle. Notice
how the parallelism available in the problem has been distributed over the life of the com-
putation, effectively using all 40 processors in most of the cycles. Overall, the performance
improved 36-fold over that of a single pipelined processor, indicating that the processors
were used with approximately 90% efficiency.

The ability of the scheduler to effectively utilize the available processors varies with
both the number of processors in the system and the communication latency. For the 9-
body problem, these variations are summarized by Figure 8. This graph clearly shows that
communication latency directly affects the maximum speed-up the scheduler can provide.

4.5 Relation to Other Parallelization Research

Many compilers for high-performance architectures use program transformations to exploit
low-level parallelism. For instance, compilers for vector machines unroll loops to help fill
vector registers. Similarly, compilers for VLIW architectures [91 use trace-scheduling to guess
which way a branch will go, allowing computations beyond the branch to occur in parallel
with those that precede the branch. These techniques are limited by their preservation of the
user data-structures of the original program: if the original program represented an object
as a vector of vectors, the compiled program will do so as well. Preserving data-structures
imposes synchronization requirements that reduce the instruction level parallelism available
to the compiler.

Our method eliminates data structures and many conditionals to produce numerical
dataflow graphs. Intermediate results are used in portions of a program that would not
otherwise have been reached even through trace-scheduling. This technique is orthogonal to
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Figure 7: The result of scheduling the 9-body problem onto 40 pipelined processors with
a communication latency of one cycle. A total of 85 cycles are required to complete the
computation. On average, 36.4 of the 40 processors are utilized during each cycle.
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Figure 8: Effects of Communiation Latency on Speedup. The graph shows the speed-up
factors over a single pipelined processor. The analysis shown is for a system composed of
processors employing a 3-stage pipeline.
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the trace-scheduling approach: symbolic evaluation eliminates conditional tests related to
data-structures, producing large parallelizable basic blocks, while trace scheduling optimizes
across basic block boundaries.

4.6 Suggestions for Future Work

Using symbolic evaluation to create numerical dataflow graphs may be combined with other
parallel-programming approaches. For example, this technique can be combined with the
futures approach of MultiScheme [11] by using symbolic evaluation to parallelize compu-
tations within a future, thereby allowing futures to be used to program a collection of
superscalar computers. Similarly, our technique may be used in conjunction with hard-
ware that dynamically schedules dataflow graphs: symbolic evaluation can be used to create
large statically analyzable nodes within a dynamic dataflow graph. Rather than connect-
ing a collection of relatively simple processors, the parallelism available within each of these
statically-analyzable nodes makes it feasible to use dynamic-scheduling hardware to combine
a collection of more powerful (parallel) processors.

5 Summary and Future Research

Many tasks lie ahead: expanding our methods to handle different types of scientific com-
putations, extending the partial evaluator, developing code generators for different kinds
of parallel architectures, and designing architectures that interact well with our software
techniques are a few of the more interesting projects.

We showed that several different types of scientific computations can be helped by our
system. Other scientific computations, such as fluid flow, protein folding, or deuterium intake
into palladium cathodes, need to be investigated. Also of importance is the development of
a library of partially evaluatable scientific routines. These abstract and reusable routines
would be automatically specialized for the problem at hand.

The partial evaluator needs to be made more general. Selection of code for partial
evaluation can sometimes require intricate massaging of the code. This massaging is an
impediment to the general nature of our technique. The partial evaluator can be extended
to work on code without any intervention by the coder.

We are interested in using partial evaluation to specialize other types of computations,
such as pattern matching [8], parsing, compiling, performing inferences over a knowledge
base, or conducting large scale database retrievals. We believe many common special purpose
algorithms can be automatically derived via partial evaluation.
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We believe our techniques are especially well suited to exploiting the superscalar archi-
tectures that are now becoming commercially available. There are also many other different
flavors of parallel processors which we have yet to investigate as targets.

Finally, there remains the investigation of architectural features that interact well with
our system. For example, large basic blocks make it feasible to use multiply interleaved
memory systems built out of slow and inexpensive components. An entry-point cache would
reduce the penalties normally associated with branching in pipelined memory systems. A
complete system would include lots of memory, ALUs, and high-throughput switches. Sup-
porting hardware such as scoreboards and automatic caches would be extraneous.

We have created a system that simultaneously supports very abstract and general pro-
gramming, while providing performance competitive with standard compilers operating on
conventionally written scientific programs. We have proven that partial evaluation automat-
ically achieves the effects many optimizations a good programmer uses (short of changing
the algorithm). We have shown that a scheduler can produce efficient code for either serial
or parallel machines. We believe that partial evaluation has an important role to play in
scientific computation.
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